30 Years Later: Health Effects from Chernobyl

Dr Ian Fairlie
Consultant on Radiation in the Environment
London
United Kingdom

Chernobyl Accident (1986)

"...the foremost nuclear catastrophe in human history" IAEA (1996)

"...its magnitude and scope, the size of the affected populations, and its long-term consequences make it, by far, the worst industrial disaster on record" IAEA/WHO (2005)

Displaced Persons (UNDP 2002)

Evacuated and resettled population

Latest doses from UNSCEAR 2008

		ave dose	coll dose
	Number	mSv	Man Sv
Recovery workers	530,000	117	62 000
Evacuees	115,000	31	3 600
Residents in contam	6.4 million	9	58 900
areas of Belarus, Russia			
and Ukraine			
Inhabitants of Belarus,	98 million	1.3	125 000
Russia and Ukraine			
Inhabitants of W Europe	500 million	0.3	150 000
Total			400,000

Estimated Deaths (all Europe)

	Year	Deaths
IAEA/WHO	2005	9,000
TORCH (2006)	2006	30,000 - 60,000
Cardis et al	2015	16,000 (6,700 to 38,000)
TORCH (2016)* **UNSCEAR 2008	2016	40,000

Some of the "liquidators..."

Clean-up worker studies

DISEASE	STUDY
coronary heart	Krasnikova et al (2014)
endocrine	Kaminskiy et al (2014)
all cancers	Prysyazhnyuk et (2014)
thyroid cancer	Ostroumova et al(2014)
solid cancers	Kashcheev et al (2014)
multiple myeloma	Bazyka et al (2013)
solid cancers	Rahu et al (2013)*
leukemia	Zablotska et al (2013)
cerebrovascular	Krasnikova et al (2013)
leukemia	Ivanov et al (2012)
B-cell cancers	Gluzman et al (2011)
many diseases	Eglite et al (2009)
blood cancers	Kesminiene et al (2008)

DISEASE	STUDY
leukemia	Romanenko et al (2008)
thyroid cancer	Ivanov et al (2008)
solid cancers	Prysyazhnyuk et al (2007)
cataracts	Worgul et al (2007)
solid cancers	Ivanov et al (2007)*
cerebrovascular	Ivanov et al (2006)
B-cell cancer	Gluzman et al (2006)*
thyroid, brain	Rahu et al (2006)
solid cancers	Ivanov et al (2004)*
thyroid cancer	Ivanov et al (2003)
schizophrenia	Loganovsky et al (2000)
leukemia	Konogorov et al (1999)*
thyroid cancer	Ivanov et al (1997)

observed health effects

- thyroid cancers
- leukemias and solid cancers
- cardiovascular disease
- birth defects
- III health among children
- + many other effects
- see Torch (2016) in press

Epidemiology studies: care required

- differing diagnostic criteria used
- insufficient/poorly matched control groups
- small numbers low statistical power
- confounding factors and biases
- nil or poor dose estimates

People move away, cases disappear Political decisions NOT to do studies

Thyroid Cancer

Thyroid Cancer Incidence

(in those who were children and adolescents in 1986) SOURCE: Jacob $et\ a/(2005)$

How large are thyroid cancer risks?

- estimated relative risk in the highest contam.
 areas are very high, ~8 (per gray)
- □ Ie 700% increase over background rate
- extraordinarily high, perhaps the largest increases in risk ever measured after exposures to toxic substances
- both in Ukraine and Belarus

Thyroid cancer in Austria

Inzidenz Schilddrüsenkrebs nach Geschlecht

Thyroid Cancer in Austria

Iodine-131 in Austria

Abbildung 4: Verteilung der gemessenen kumulativen ¹³¹I Aktivitätskonzentrationen (part.) in der Luft über Österreich (1986), Zellengröße: 50 × 50 km

Thyroid cancer - other countries

- Czech Republic: Murbeth et al (2004) TC incidence increased by 2.6% per y (95%-CI: 1.2-4.1) after 1990
- North England: Cotterill et al (2001) incidence in children/young adults, (1987-97)/(1968-1986) = 2.3
- East Slovakia: Icso et al (1998) found TC incidence was 1.3x higher in 10 yr period after Francethan before
- Poland: Roszkowska and Goryński (2004) observed substantial increases in TC incidence after 1991
- France: Verger et al (2003) reported TC incidence increased x 5.2 in men and 2.7 in women, 1975 to 1995

How many excess thyroid cancers will occur?

- So far >6,000 cases (UNSCEAR, 2008)
- >16,000 cases (Cardis, 2015)
- My own estimate is 21,000 cases

Leukemia

Leukemia in Clean-up Workers

source: Ivanov (1997)

Leukemia in Europe

- Russian workers (500% increase/Gy)
- Ukrainian workers (240% increase/Gy)
- increased incidences in Finland,
 Slovakia, Germany, Greece and Italy
- European Childhood Leukaemia-Lymphoma Incidence Study (IARC)
- possible in utero effect

Solid Cancers

increase in cancer incidence (for ages 20-85 per 100,000 population) in Belarus liquidators 1997-2000, compared with control adults in least contaminated area

Cancer	Incidence in controls	Incidence in liquidators	increase
All sites	373.3	464.6	23%
Bladder	11.4	18.7	65%
Colon	16.7	22.2	33%
Lung	52.6	66.3	26%
Kidney	15.4	19.1	24%
Stomach	40.8	46.9	15%

source: Okeanov et al (2014)

Radiogenic Cardiovascular Disease

- aetiology? inflammatory response?
- non-targeted effect of radiation?
- a stochastic effect? long latency period, no threshold, progressive
- stroke+heart disease caused 1/3 of radiogenic deaths in atomic bomb cohort
- all cancer also caused 1/3 of radiogenic deaths in atomic bomb cohort

Cardiovascular Disease (LSS)

Weighted colon dose (Gy)

Stroke (LSS)

Weighted colon dose (Gy)

Radiogenic Cardiovascular Disease - Risks

- Ivanov *et al*, 2000 (clean-up workers) ERR/Sv = 0.54 (95% CI 0.18 0.91)
- Shimizu et al, 2012 (LSS)
 ERR/Sv = 0.14 (95% CI 0.06 0.23)
- Buzunov et al, 2013 observed risks down to 6-20 mSv!

Birth Defects

Major study on birth defects

150,000 births, 10 years, (Timchenko et al, 2014)

Frequency per 1000 live births	polluted areas	clean areas	% increase
all birth defects	26.10 ± 0.80	24.23 ± 0.47	7.7%
nervous system birth defects	1.09 ± 0.17	0.75 ± 0.08	45%

Down Syndrome

- Scotland (Ramsay et al, 1991)
- Southern Germany (Sperling et al, 1991)
- Finland (Harjulehto-Mervaala et al, 1992)*
- Hungary (Czeizel et al, 1993)*
- Sweden (Ericson and Kallen, 1994)
- Berlin (Sperling et al, 1994, 1994b)
- England (Bound et al, 1995)
- Belarus (Zatsepin *et al*, 2007) (26 obs: 9.84 exp;
 O/E ratio=2.64; CI=1.72-3.76)

Persistent ill health in children

Persistent ill health in children

- impaired lung function, increased breathing difficulties Svendsen et al (2010, 2015)
- decreased blood count Stepanova et al (2008) Lindgren et al (2015)
- increased immunoglobulin factors Titov et al (1995), McMahon et al (2014)
- increased anaemias and colds McMahon et al (2015)
- improvement with clean food McMahon et al (2015)

Chernobyl in a nutshell

- 5 million people in still live in highly contaminated areas
- 400 million people in less contaminated areas
- 42% of western Europe also seriously contaminated
- half of Chernobyl's fallout deposited on W Europe
- 40,000 fatal cancers of all types predicted
- 6,000 thyroid cancer cases, thousands more expected
- increased thyroid cancers in Austria and other western
 European countries
- increased radiogenic leukemia, cardio-vascular disease,
 breast cancers confirmed
- radiogenic birth defects, mental health effects
- children in contaminated areas suffer radiogenic illnesses

Chernobyl: conclusions

- nuclear power is a supremely unforgiving technology
- terrible consequences
- millions still in contaminated areas
- health effects still occurring
- need for more research in Europe
- need for more humanity towards affected peoples

the future....

Good References

- •Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubing JH, Preston DL, Preston JR, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB and Zaider M (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. (2003) PNAS Nov 25, 2003, vol. 100 no. 24 13761–13766
- Cardis E (2005) Cancer effects of the Chernobyl accident (presentation at IAEA/WHO Conference `Environmental and Health Consequences of the Chernobyl Accident')
- •CERRIE (2004) Report of the Committee Examining Radiation Risks of Internal Emitters London, October 2004 www.cerrie.org (accessed February 12, 2006)
- •Day R. Gorin MB and Eller AW (1995) Prevalence of lens changes in Ukrainian children residing around Chernobyl Health Physics 68 632-42
- •Dubrova YE, Grant G, Chumak AA, Stezhka VA, Karakasian AN (2002) Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine. Am J Human Genet 71:801-809
- •Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL and Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380 683-686
- Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Vergnaud G, Giraudeau, Buard J and Jeffreys AJ (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat. Res. 381, 267-278
- •European Commission (1998) Atlas of Caesium Deposition on Europe after the Chernobyl Accident. European Commission. EUR 19810 EN RU. Brussels
- •Goossens LHJ, Harper FT, Harrison JD, Hora SC, Kraan BCP, Cooke RM (1998) Probabilistic Accident Consequence Uncertainty Analysis: Uncertainty Assessment for Internal Dosimetry: Main Report. Prepared for U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, USA. And for Commission of the European Communities, DG XII and XI, B-I049 Brussels Belgium. NUREG/CR-6571 EUR 16773.
- •IAEA/WHO (2005a) Health Effects of the Chernobyl Accident and Special Health Care Programmes. Report of the UN Chernobyl Forum Expert Group "Health" (EGH) Working draft. July 26 2005
- •IAEA/WHO (2005b) Environmental Consequences of the Chernobyl Accident and their Remediation. Report of the UN Chernobyl Forum Expert Group "Environment" (EGE) Working draft. August 2005
- •IAEA/WHO/EC (1996) One Decade After Chernobyl: Summing up the Consequences of the Accident.
- •Ivanov VK et al (2000) Radiation-epidemiology analysis of incidence of non-cancer diseases among the Chernobyl liquidators. Health Physics 78, 495-501
- •Ivanov VK, Tsyb AF, Gorsky AI, et al (1997) Thyroid cancer among "liquidators" of the Chernobyl accident. Br J Radiol 70: 937-41
- Jacob P, Meckbach R, Ulanovski A, Schotola C and Pröhl G (2005) Thyroid exposure of Belarusian and Ukrainian children due to the Chernobyl accident and resulting thyroid cancer risk. GSF-Bericht 01/05, Neuherberg: GSF-Forschungszentrum mbH, 72S.; mit Anhang
- •Meara J (2002) Getting the Message Across: Is Communicating the Risk Worth it? J of Radiation Protection Vol 22 pp 79-85
- •Okeanov AE, Sosnovskaya EY, Priatkina OP (2004) A national cancer registry to assess trends after the Chernobyl accident. Swiss Med Wkly 134:645-9
- Preston DL, Shimuzu Y, Pierce DA, Suyama À and Mabuchhi K (2003) Studies of mortality of Atomic Bomb survivors. Report 13: Solid Cancer and Non-cancer Disease Mortality: 1950-1997 Radiation Research 160, 381-407
- Pukkala E, Poliakov S, Ryzhov A, Kesminiene A, Drozdovich V, Kovgan L, Kyyrönen P, Malakhova I V, Gulak L and Cardis E Breast cancer in Belarus and Ukraine after the Chernobyl Accident. (2006) International Journal of Cancer, in press
- •Robb JD (1994) Estimates of Radiation Detriment in a UK Population. NRPB Report R-260 National Radiological Protection Board, Chilton, Oxon
- •Thorne MC (2003) Background radiation: natural and man-made. J Radiol Prot vol 23(1) pp 29-42
- •UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with Scientific Annexes. (New York:UN) Annex B
- •US DoE (1987) Report of Interlaboratory Task Group. Health and Environmental Consequences of the Chernobyl Nuclear Power Plant Accident. US Department of Energy DOE/ER-0332 NTIS Springfield VA 22161
- •WHO/IPHECA (1995) Health Consequences of the Chernobyl Accident, Results of the International Programme on the Health Effects of the Chernobyl Accident (IPHECA). Summary Report. World Health Organisation.