Infant mortality in Japan after Fukushima

Alfred Körblein Nuremberg, Germany

www.strahlentelex.de/Koerblein infant%20mortality%20after%20Fukushima.pdf

Cesium soil contamination in the study region around Fukushima including the prefectures of Fukushima, Iwate, Miyagi, Gunma, Tochigi, Ibarki, and Chiba.

Source: Press communication by MEXT (Ministry for Education and Research), September 12, 2012

Analysis of monthly infant mortality rates

- Combined regression of data from study region and control region (2 x 132 = 264 data points)
- Linear temporal trend (variable t)
- Regression uses data from January 2002 through March 2011
- Seasonal effects are modeled by 11 dummy variables for February through December (January is the reference month)
- Dummy variable "study" denotes the data from the study region
- A dummy variable "dmar11" indicates March 2011
- Altogether 15 parameters needed: intercept, t, feb-dec, study dmar11

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.663988
                       0.024360 -232.514 < 2e-16 ***
t
           -0.033917
                       0.002289 -14.814 < 2e-16 ***
feb
           -0.004982
                       0.028604
                                -0.174 0.86172
           -0.021888
                       0.028236
                                -0.775 0.43824
mar
           -0.010739
                       0.028875
                                -0.372 0.70996
apr
           0.008448
                       0.028534 0.296
                                         0.76719
may
jun
           -0.043618
                       0.029143
                                -1.497
                                         0.13447
           -0.116444
                       0.029208
                                -3.987 6.70e-05 ***
jul
           -0.088534
                       0.029078
                                 -3.045 0.00233 **
aug
                                 -5.528 3.23e-08 ***
           -0.164554
                       0.029765
sep
           -0.083063
                       0.029160
                                -2.848 0.00439 **
oct
                                -1.218 0.22310
           -0.035713
                       0.029313
nov
            0.010151
                       0.028670
                                0.354
                                         0.72329
dec
study
            0.035245
                       0.017070
                                2.065 0.03895 *
dmar11
            1.172997
                       0.106606
                                 11.003
                                         < 2e-16 ***
```

Residual deviance: 191.33 on 207 degrees of freedom

Results

Regression model:

Combined regression of data from the study region and the data from Japan without the study region

11 dummy variables for February through December (January is the reference month) and a dummy variable for March 2011

- 3.2-fold increase in March 2011 (*P*<0.0001), 65 excess infant deaths
- significant 50% increase in March 201255 excess infant deaths in 2012

Upper panel: Infant mortality rates in the study (black dots) and control region (open circles) Lower panel: Deviations of observed from expected odds ratios (standardized residuals) and 3-month moving average

Alternative approach: analysis of the odds ratios

For rates << 1: odds ratio ~ rate ratio.

rate ratio = mortality rate in the study region, divided by mortality rate in control region (rest of Japan)

Advantage:

No time trend, no seasonal effects, dummy "study" is now the intercept

Possible effect from radiation exposure modeled by a bell-shaped excess term (3 parameters: effect size, peak position, half-width)

Altogether only 5 parameters

Results:


```
Regression model (R notation):
Formula:
p \sim 1/(1+1/exp(c1+c2*dmar11+
    c3/t/exp((log(t)-log(c4))^2/c5))
Estimate Std.Error t value Pr(>|t|)
                                0.0091
c1
     0.0413
              0.0156
                       2.649
c2
     1.2450
              0.1222
                        10.19
                                0.0000
с3
     3.6680
              1.2630
                        2.903
                                0.0044
     12.370
              0.0884
                       139.9
                                0.0000
c4
c5
     0.0007
              0.0005
                        1.207
                                0.2298
deviance=110.8 (df=127) good model fit!
```

Excess in 2012 (bell-shaped term) is significant (*P*=0.009, F test with (3, 127) degrees of freedom)

Upper panel: Ratio of infant mortality rates in the study and control region (odds ratio) Lower panel: Deviations of observed from expected odds ratios (standardized residuals)

Early infant mortality (0-6 days) in West Germany after Chernobyl

Upper panel: Early infant mortality rates in West Germany, 1984-1990 Lower panel: Standardized residuals and 3-month moving average

Infant mortality (<1 year) in Poland after Chernobyl

Regression model:
Linear logistic regression of the data in 1985-91 without 1987.
11 dummy variables for February through December (January is the reference month)

Significant increases in January and April 1987

Upper panel: Infant mortality rates in Poland 1985-1991

Lower panel: Standardized residuals and 3-month moving average

Early infant mortality (0-6 d) in Zhytomir oblast (Ukraine) after Chernobyl

Regression model:
Logistic regression of the data in
1985-90 without 1987. Linearquadratic time trend.
11 dummy variables for February
through December (January is the
reference month)

Significant increase in December 1986 through July 1987

Upper panel: Infant mortality rates in Zhytomir, 1985-1990

Lower panel: Standardized residuals and 3-month moving average

Summary

- Significant increase of infant mortality, starting 9 months after Fukushima, in Japanese prefectures near Fukushima (P=0.009)
- 55 excess infant deaths in 2012
- No increased infant mortality in the rest of Japan
- Similar effects observed in several countries (Germany, Poland, Ukraine) after Chernobyl

Decrease of live births 9 months after Fukushima: early spontaneous abortions?

Radiation dose rate in the first month following the accident

Objective: To test a possible decrease of live births 9 months after Fukushima

Regression model:

Poisson regression of live birth data (Jan 2002-Dec 2011) from the study region with 11 dummy variables for February through December (January is the reference month) and a dummy variable for December 2011

- 10% drop of live birth in Dec 2011
 (P<0.0001), 1247 missing births
- no significant deviation in Nov 2011
 or in Jan 2012

Upper panel: Trend of live births and regression line

Lower panel: Standardized residuals

Birth deficit in the prefectures of the study area: Greatest effects in Fukushima, Miyagi, and Tochigi

Prefecture	%change	P value	birth deficit
Iwate	-5.2%	0.1567	39
Miyagi	-18.1%	<0.0001	274
Fukushima	-15.3%	0.0002	190
Gunma	-6.8%	0.1009	86
Tochigi	-11.3%	0.0061	151
Ibaraki	-6.7%	0.0026	129
Chiba	-8.8%	0.0002	382
study region	-10.1%	5.8E-7	1251
rest of Japan	-3.0%	0.0459	2329
all of Japan	-4.0%	0.0090	3572

Objective: To test a possible decrease of live births 9 months after Chernobyl

Regression model:

Poisson regression of live birth data (Jan 1984-Dec 1991) from the study region with 11 dummy variables for February through December (January is the reference month) and a dummy variable for January 1987. The data for 1987 is omitted from the regression.

- 16.8% drop of live birth in Jan 1987
 (P<0.0001), 2482 missing births
- no significant deviation from the trend in Dec 1986
- decreased birth rate in Feb-Aug 1987

Upper panel: Trend of live births and regression line

Lower panel: Standardized residuals

Down Syndrome (DS) peak in Belarus in January 1987 after Chernobyl

Upper panel: Trend of tisomy 21 incidence

Lower panel: Standardized residuals

Regression model:

Logistic regression of trisomy 21 incidence data with 11 dummy variables for February through December (January is the reference month), a 3rd degree polynomial for the time trend, and a dummy variable for January 1987.

2.3-fold increase of DS incidence in January 1987 (*P*=0.0004)

From: Zatsepin I, Verger P, Robert-Gnansia E, Gagnière B, Tirmarche M, Khmel R, Babicheva I, Lazjuk G. Down syndrome time-clustering in January 1987 in Belarus: link with the Chernobyl accident? Reprod Toxicol. 2007 Nov-Dec;24(3-4):289-95.

Down Syndrome (DS) peak in West Berlin in January 1987 after Chernobyl

Regression model: Logistic regression of trisomy 21 incidence with a linear time trend and a dummy variable for January 1987.

5.7-fold increase of DS incidence in January 1987 (*P*<0.0001)

From: Sperling K, Pelz J, Wegner RD, Dörries A, Grüters A, Mikkelsen M. Significant increase in trisomy 21 in Berlin nine months after the Chernobyl reactor accident: temporal correlation or causal relation? BMJ. 1994 Jul 16;309(6948):158-62.

Upper panel: Trend of tisomy 21 incidence

Lower panel: Standardized residuals

Summary

- Drop of live births in December 2011, 9 months after Fukushima
- Decrease of live births limited to a single month
- Effect greatest in prefectures with highest cesium soil contamination
- Effect cannot be attributed to public worry alone:
 Public worry would be expected to last at least for some months.
- Immediately after fertilization, the zygote is extremely sensitive. Radiation damage to the zygote from the high initial radiation spike can trigger early spontaneous abortions which manifest as a drop of live births 9 months later.
- Increase in trisomy 21 observed in January 1987 in Belarus and West Berlin